Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network

نویسندگان

  • Oyebade K. Oyedotun
  • Kamil Dimililer
چکیده

The ability of the human visual processing system to accommodate and retain clear understanding or identification of patterns irrespective of their orientations is quite remarkable. Conversely, pattern invariance, a common problem in intelligent recognition systems is not one that can be overemphasized; obviously, one‘s definition of an intelligent system broadens considering the large variability with which the same patterns can occur. This research investigates and reviews the performance of convolutional networks, and its variant, convolutional auto encoder networks when tasked with recognition problems considering invariances such as translation, rotation, and scale. While, various patterns can be used to validate this query, handwritten Yoruba vowel characters have been used in this research. Databases of images containing patterns with constraints of interest are collected, processed, and used to train and simulate the designed networks. We provide extensive architectural and learning paradigms review of the considered networks, in view of how built-in invariance is learned. Lastly, we provide a comparative analysis of achieved error rates against back propagation neural networks, denoising auto encoder, stacked denoising auto encoder, and deep belief network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN ...

متن کامل

A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in Caffe

This paper presents the development of several models of a deep convolutional auto-encoder in the Caffe deep learning framework and their experimental evaluation on the example of MNIST dataset. We have created five models of a convolutional auto-encoder which differ architecturally by the presence or absence of pooling and unpooling layers in the auto-encoder’s encoder and decoder parts. Our r...

متن کامل

Sparse and Deep Generalizations of the FRAME Model

In the pattern theoretical framework developed by Grenander and advocated by Mumford for computer vision and pattern recognition, different patterns are represented by statistical generative models. The FRAME (Filters, Random fields, And Maximum Entropy) model is such a generative model for texture patterns. It is a Markov random field model (or a Gibbs distribution, or an energy-based model) o...

متن کامل

Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Character recognition is a field of machine learning that has been under research for several decades. The particular success of neural networks in pattern recognition and therefore character recognition is laudable. Research has also long shown that a single hidden layer network has the capability to approximate any function; while, the problems associated with training deep networks therefore...

متن کامل

Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

Accelerating deep neural networks (DNNs) has been attracting increasing attention as it can benefit a wide range of applications, e.g., enabling mobile systems with limited computing resources to own powerful visual recognition ability. A practical strategy to this goal usually relies on a two-stage process: operating on the trained DNNs (e.g., approximating the convolutional filters with tenso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016